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The finite-amplitude instability of mixed convection of air in a vertical concentric 
annulus with each cylinder maintained at a different temperature is studied by use of 
weakly nonlinear instability theory and by direct numerical simulation. A strictly shear 
instability and two thermally induced instabilities exist in the parameter space of 
Reynolds and Grashof numbers. The first thermal instability occurs at low Reynolds 
numbers as the rate of heating increases, and is called a thermal-shear instability 
because it is a shear-driven instability induced by thermal effects. The second thermal 
instability occurs at larger Reynolds number as heating increases, and is also a 
thermally induced shear instability called the interactive instability. The weakly 
nonlinear results demonstrate that the thermal-shear instability is supercritical at all 
wavenumbers. With the shear and interactive instabilities, however, both subcritical 
and supercritical branches appear on the neutral curves. The validity of the weakly 
nonlinear calculations are verified by comparison with a direct simulation. The results 
for subcritical instabilities show that the weakly nonlinear calculations are accurate 
when the magnitude of the amplification rate is small, but the accuracy deteriorates for 
large amplification rates. However, the trends predicted by the weakly nonlinear theory 
agree with those predicted by the direct simulations for a large portion of the parameter 
space. Analyses of the energy sources for the disturbance show that subcritical 
instability of the shear and interactive modes occurs at larger wavenumbers because of 
increased gradient production of disturbance kinetic energy. This is because, at shorter 
wavelengths, the growth of the wave causes the shape of the fundamental disturbance 
to change from that predicted by linear instability theory to a shape more favourable 
for shear-energy production. The results also show that many possibly unstable modes 
may be present simultaneously. Consequently, all of these modes, as well as all of the 
possible wave interactions among the modes, must be considered to obtain a complete 
picture of mixed-convection instability. 

1. Introduction 
Mixed convection occurs in many engineering systems, as well as in the atmosphere. 

Mixed convection differs from isothermal flow due to the buoyancy effects induced by 
heating. Only in the limit of zero heating is the flow isothermal. Different heating 
conditions result in distinctive temperature distributions and, consequently, different 
flow fields and instability characteristics. Experimental results in circular pipes 
indicate that these flows become unstable at relatively low heating rates and Reynolds 
numbers (Scheele & Hanratty 1962; Kemeny & Somers 1962; Maitra & Subba Raju 
1975), and a steady, parallel non-isothermal flow has rarely been observed. In spite of 
these results, in the analysis of non-isothermal flow inside ducts the flow has often been 
incorrectly treated as a parallel flow, and many correlations for heat transfer coefficients 
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and friction factors have been developed based on these oversimplified models. In this 
paper, we will provide insight into this complex problem by studying the finite- 
amplitude instability of mixed convection in a vertical concentric annulus with each 
wall maintained at a different temperature using weakly nonlinear instability theory, 
as well as a direct numerical simulation. 

In practical systems, the thermal boundary conditions frequently can be app- 
roximated as a linear combination of two conditions: the temperature and the heat flux. 
The conditions of constant temperature and constant heat flux can be accurately and 
easily set up in the laboratory. However, the basic states are different for each case, and 
linear instability analyses of mixed convection in vertical annuli have demonstrated 
that the instability characteristics differ substantially. In case I, each cylinder was 
maintained at a different temperature (Yao & Rogers 1989a, b). In case 11, a constant 
heat flux was imposed on the inner cylinder, and the outer cylinder was insulated 
(Rogers & Yao 1992a). 

For case I, the results for air (Prandtl number Pr = 0.71) demonstrated that the 
instability boundary consists of three distinct instabilities, identified by their 
characteristic wavenumbers and wave speeds. The shear instability occurs at large 
Reynolds numbers. The critical Reynolds number for the shear instability in mixed- 
convection flows is, however, different from that of isothermal flow. This is because the 
difference in temperature between the walls induces a thermal stratification, and the 
resulting buoyant forces modify the velocity profiles. In addition, at fixed Reynolds 
number, Re, thermal instability can occur when the temperature difference between the 
walls increases, such that the corresponding ratio of Grashof and Reynolds numbers 
(GrlRe) reaches its critical value. This thermal instability approaches natural- 
convection instability as Re decreases to zero. As Re increases, the critical (Gr/Re) 
initially decreases, but soon becomes almost independent of Re. Analysis of the energy 
transfer in mixed convection has shown that there are two sources of kinetic energy to 
sustain the instability. The first of these is the shear production, which is the product 
of the Reynolds stress and the mean-flow strain rate, and the second is the buoyant 
potential. The low-Re thermal instability originates with an unstable velocity 
distribution caused by buoyant forces, but most of the kinetic energy for this instability 
is obtained by shear production. Therefore, this is a shear instability induced by 
thermal effects, and is called the thermal-shear instability. As Gr/Re and Re increase, 
another thermal instability appears that bridges the gap between the thermal-shear and 
the shear instabilities. This instability also obtains energy primarily through shear 
production, and is called the interactive instability. 

The linear stability results of case I1 demonstrated that, in addition to the shear and 
thermal-shear instabilities, two more thermally induced instabilities may appear. When 
the vertical temperature gradient is negative, a Rayleigh-Taylor type instability is 
possible since the vertical density stratification is unstable. However, in the stably 
stratified case, the Rayleigh-Taylor mode is not present, and a thermal instability 
occurs as the Rayleigh number, which characterizes the magnitude of the vertical- 
temperature gradient in this case, increases. This instability will be of thermal-shear 
type at small Prandtl numbers, but at large Prandtl numbers, the instability obtains 
kinetic energy primarily by buoyant production. This is called the thermal-buoyant 
instability. The minimum critical value of the Rayleigh number was found to be a very 
weak function of Re for Re greater than 200, and the shape of the instability boundary 
in the (Ra, Re)-plane is similar for both the thermal-shear and thermal-buoyant 
instabilities. However, the least stable value of the Rayleigh number is much smaller 
for the thermal-buoyant instability at large Pr than it is for the thermal-shear mode at 
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small Pr. Experimental heat-transfer results are available for the flow of water in the 
stably stratified flow for case I1 (Maitra & Subba Raju 1975), and the heat-transfer 
results predicted by weakly nonlinear instability theory (Yao & Rogers 1992 herein 
referred to as YR) agreed very well with the data. 

The linear stability results for case I have demonstrated that the physics differs from 
that of case 11, including the appearance of the interactive instability and of non- 
axisymmetric modes. In this paper, we study the finite-amplitude instability of this 
problem and compare the results with those of a direct numerical simulation. The 
details of the weakly nonlinear theory are given in YR, and are not repeated here. 

An advantage of weakly nonlinear instability theory is that the required 
computational effort is modest, yet it provides accurate results when the magnitude of 
the amplification rate is small. However, the range of validity of the theory has not 
been established with certainty using perturbation methods. For plane-Poiseuille flow, 
Sen & Venkateswarlu (1983) included many terms in the perturbation series and 
investigated its convergence. Their results demonstrated that the Landau-Stuart series 
converges rapidly only when the magnitude of the amplification rate is small. As the 
magnitude of the amplification rate increases, the series converges more slowly, and 
soon begins to diverge. These results did not, however, establish the range for which 
the perturbation method produces accurate results. In this paper, we include only one 
additional term in the series, and compare the amplitude predicted by both perturbation 
theories to the results of a direct numerical simulation at selected points. Our results 
show that if the predictions of the lowest-order theory agree with the higher-order 
theory, they will also agree with the direct simulation. Therefore, when the results from 
both perturbation theories are in agreement, the predictions are reliable, and 
verification by a direct simulation is unnecessary in these cases. 

In $2, the problem of mixed convection in a vertical annulus with each wall 
maintained at a different temperature is formulated. The results of the weakly 
nonlinear analysis in $ 3  show that the thermal-shear instability is supercritical. On the 
other hand, both the shear and interactive instabilities may be subcritical or 
supercritical at the least-stable wavenumbers. However, the modes are always 
subcritical at other nearby wavenumbers. The comparison of the techniques for 
determining the subcritical threshold velocity shows that when the amplification, 
characterized by the imaginary portion of the eigenvalue c, is small, the results are in 
agreement. As lcil increases, the results begin to diverge. On one hand, the results of 
the direct simulation demonstrate that, even though the threshold amplitudes are 
inaccurate, the trends predicted by the weakly nonlinear calculations are correct for a 
substantial range of IctI. The calculations show, on the other hand, that the weakly 
nonlinear results are not accurate in the subcritical region for IcJ > 0.01. The results 
of the calculations in the supercritical region demonstrate that the weakly nonlinear 
method can be extended further than is the case for subcritical instability. Analysis of 
the energy sources for the disturbance demonstrates that subcritical instability occurs 
at larger wavenumbers primarily because of increased gradient production of 
disturbance kinetic energy. This is because the shape of the fundamental disturbance 
changes from that predicted by linear instability theory to a shape more favourable for 
shear energy production at shorter wavelengths. The results also indicate that for both 
subcritical and supercritical instabilities, many possibly unstable modes may be present 
at the same values of Gr/Re and Re. Consequently, all of these modes, as well as all 
of the possible wave interactions among the modes, must be considered to obtain a 
complete picture of mixed-convection instability. 
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FIGURE 1. Geometry and coordinates. 

2. Analysis 
2.1. Formulation 

In this paper, pressure-driven non-isothermal flow in a vertical concentric annulus, as 
illustrated in figure 1, is considered. The temperatures of the inner and outer cylinders 
are and T,, respectively. The governing equations are the Boussinesq equations in 
cylindrical coordinates : 

where 

The z-coordinate has been made dimensionless by scaling with the gap width, ro - ri. 
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The dimensionless radial coordinate is 7 = (r - r i ) / ( r ,  - ri)  and the curvature parameter 
is K = rg/(ro - rz). The dimensionless temperature is given by 8 = (T-  TJ/(q - T,). The 
velocities are scaled by the mean axial velocity, W,,,, the pressure by p( Wave)2, and time 
by (ro-ri)/Wave. The parameters in the problem are the Reynolds number, 
Re = Wa,,(ro-rg)/v, the Prandtl number, Pr = v / y ,  and the Grashof number, 
Gr = bg(r0-rJ3 (q- T)/v2,  where g is the gravitational acceleration, p the thermal 
expansion coefficient, v the kinematic viscosity and y the thermal diffusivity. The 
boundary conditions for the velocity components are the no-slip and no-penetration 
conditions on the concentric cylinders. The temperature boundary conditions are 
O(0) = 1 and 8(l) = 0. 

2.2. Basic state and linear instability 
The basic state is a fully developed, laminar parallel flow and a corresponding 
temperature distribution (Yao 8z Rogers 1 9 8 9 ~ ) .  The equations for the basic state are 
given by 

d2W, 1 dW, +-@,, Gr = Re-,  dP0 
dz -+-- dy2 7 + K  dy Re 

d2@, 1 d@ o, -+-a= 
dy2 y + K  dy 

The product of the axial pressure gradient and the Reynolds number may be 
determined by the requirement of global mass conservation : 

1 W(y+K)dy = $(I +2K). 

Therefore, the basic-state velocity and temperature profiles depend only on the 
curvature parameter, K, and the ratio Gr/Re. The solution of (2) is described in Yao 
& Rogers (1989a). The results show that as Gr/Re increases, the fluid near the warmer 
wall is accelerated by buoyant forces, leading to a corresponding deceleration of the 
fluid near the colder wall so that mass is conserved. The velocity profiles are thus 
distorted by buoyancy, leading to the appearance of inflexion point, which indicates a 
potential for instability. 

To determine the linear stability of the basic state, the dependent variables are split 
into a basic state and a small disturbance, as follows: 

(3 a)  u(v,q5, z, t )  = d(q)  eia(z-ct)+in+, 

where W, and 8, are the basic-state velocity and temperature distributions respectively, 
and the A denotes a small-disturbance quantity. The standard normal-mode form has 
been assumed for the disturbance, where a is the axial wavenumber, and n is the integer 
azimuthal wavenumber. The expressions given by (3) are substituted into the governing 
equations, the basic state is subtracted, and the small nonlinear terms are neglected. 
This results in a set of ordinary differential equations which describe the small 
disturbance. These equations form a linear eigenvalue problem for the complex 
disturbance wave speed, c, with the disturbance being unstable for c2 > 0 and stable for 
C( < 0. 
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2.3.  Weakly nonlinear instability analysis 
To study the finite-amplitude instability of the basic state using weakly nonlinear 
theory, the dependent variables are first separated into Fourier components of a 
disturbance wave predicted by linear-instability theory. The equations governing the 
harmonic components are then solved using a perturbation expansion. In YR, the first 
correction to the exponential growth predicted by linear-instability theory was 
obtained, and the results were compared to experimental data. In the present case, 
there are no experimental results available for comparison. Therefore, we investigate 
the accuracy of the perturbation method more carefully by including one more term in 
the expansion. The Fourier expansion of, for example, the axial velocity is 

w(q,$, z ,  t )  = w(7,71,72) En + w1(7,71,7,) El + W & q ,  71,72) E2 
+ w3(7,71,72) E3 + . . . + c.C.9 (4) 

where E = exp (ia(z - c, t )  + in$), and C.C. stands for complex-conjugate. The inclusion 
of E4 and higher harmonics is not necessary in the present analysis. The disturbance 
wave speed c, is obtained from linear-instability theory at the particular values of 
Gr/Re, Re, a, and n under consideration. Substituting this expansion, as well as similar 
expansions for the other dependent variables, into the governing equations and 
separating out Fourier components results in sets of equations for each wave 
component. 

The functions for each harmonic component are further expanded in terms of 
the small parameter c,. In this paper, the procedure used in YR is followed, and 
terms up to order (cJ; are considered. Using the method of multiple timescales, with 
( r ,  T~ = c, t, T~ = cf r), results in 

The consistent expansion of the E' wave is 

G ~ ( v ,  71, 72) = 4 ~l(719.2) ~ J V )  + ~ $ w v ~  ~ 1 1 +  ~719.3 ~ 1 0 1  

+ c: wi~(7,  71,721 + o(Ci), (6) 
where B1(7', 72) and B2(7,, 72) are order-one amplitude functions. Expansions for the 
other components of the El wave are given by similar expressions. The expansion for 
the El wave given by (6) leads to specific algebraic expressions for the expansions of 
the forced waves, En, E 2  and E3.  The result is a system of equations which may be 
solved sequentially in increasing powers of c,. The expansion represents a small 
modification to that of Stuart (1960), in that the terms involving the difference between 
the basic-state velocity and the complex disturbance wave speed, W, - c,  are considered 
to be order one. This is because the finite-amplitude disturbance is expressed as a 
perturbation on the state of a finite amplification rate, c,. At third order (~(CJ;), the 
El equations become non-homogeneous equations with the left-hand sides consisting 
of the linear-instability operators operating on the functions ull, vI1, wll and 011, and 
the right-hand sides consisting of terms proportional to aBl/a71, Bl and B,IBJ2. The 
coefficients of the terms on the right-hand sides consist of functions determined from 
the analysis of the En and E2 waves at second order. Since the homogeneous forms of 
the equations in this case are those of the linear-instability problem, the integrability 
condition requires that the non-homogeneous terms be orthogonal to the functions 
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satisfying the homogeneous adjoint problem. This leads to the following amplitude 
equation for B, : 

(7) 
The constant a, is called the first Landau constant, and is obtained through the 
application of the integrability condition. This equation differs from the ordinary 
differential equation obtained in YR due to the inclusion of the additional slow 
timescale 7,. If higher-order terms are not considered, (7) predicts supercritical 
instability if the real part of a, is negative, with an equilibrium amplitude of 
lA1lz = ciIB,J2 = -aci/(ai), where ( ),, denotes the real part. If ( u ~ ) ~  is positive, a 
subcritical instability is predicted with &I2 = I a~~ / (a , )~ l .  (In this paper, the eigenvectors 
have been normalized so that the numerical value of IAI2 represents the ratio of the 
disturbance kinetic energy to that of the mean flow.) 

To obtain a more accurate result, terms up to fifth-order (O(ci)i) are considered. At 
this order, the El equations again become non-homogeneous with the homogeneous 
parts consisting of the linear-instability operators operating on the functions a,,, ul2, 
w12, and g,,. The non-homogeneous terms are proportional to aBl/ar2, i3B2/i3r1, B,, 
B,(B,12, B,1B,I4, B21B112, and B,(B,)'. The integrability condition at this order leads to 
the following amplitude equation : 

i3Bl/i3r1 = aB, +al B,IB112. 

The coefficients of the amplitude function in this equation are also determined through 
application of the integrability condition. Following the procedure described by 
Fujimura (1989), it is possible to show that a, = :AB = A,. Making use of these relations, 
adding (7) and (X), and keeping terms up to order ci, the following single amplitude 
equation is obtain: 

(9) 

where B = B, + ci B, and a/& = a/&, + cI a/&,. Therefore, the amplitude predicted by 
this equation represents an order-c, correction to the amplitude predicted by the 
Landau equation at order (c$. 

It is worth pointing out that all of the coefficients in (9) are determined uniquely by 
the integrability conditions, with no additional constraints on the system, as would be 
necessary in an amplitude-expansion theory. Furthermore, the problem of mean-flow 
resonance in the subcritical region (Davey & Nguyen 1971) does not occur in this 
method. These points have been discussed in detail in YR. 

aB/& = crB+ (a, + ci A,) B(Bla + ci a, BIBI4, 

2.4. Direct numerical simulation 
The Navier-Stokes system was solved numerically as an initial value problem using a 
spectral collocation method in space and finite differences in time. The spatial 
discretization is based on Fourier expansions in the axial and azimuthal directions and 
Chebyshev polynomials in the radial direction. The dependent variables are represented 
by expansions of the form 

"-1 ;N -1 

u(7, +, z, t )  = ' 9 2 zi(q, m, n, t> ei[m++na(z-crt)l, (104 
n=-'N m=-'N E Z  Z d  



236 B. B. Rogers, S.  Ghosh Moulic and L. S.  Yao 

where a is the fundamental wavenumber in the axial direction, c, is the phase speed of 
the waves predicted by linear-instability theory, &(y)  is the kth degree Chebyshev 
polynomial defined by T,(y) = cos (kcos-ly), y = 27- 1, and N,, N,  and N# are the 
number of collocation points in the radial, axial and azimuthal directions, respectively. 
The collocation points are 

This choice of collocation points yields ‘spectral accuracy’ and allows fast 
transformation of variables between physical space and wave space. Time differencing 
was done using a Crank-Nicolson scheme for the diffusion terms, backward Euler for 
the pressure and second-order Adams-Bashforth for the convection and body force 
terms. The rotation form of the Navier-Stokes equations is preferred for the numerical 
simulations because, as noted by Orszag (1972), the use of this form guarantees that 
Fourier collocation methods conserve kinetic energy and ensures that the nonlinear 
terms do not cause numerical instability. Time-differencing errors are reduced by using 
a coordinate system moving with the constant phase speed of the wave, as indicated by 
(lOa), although, because of Galilean invariance, this is equivalent to a calculation in 
a frame of reference which is at rest. The momentum equations are decoupled by 
solving a Poisson equation for the pressure. The correct boundary conditions for the 
pressure, consistent with a divergence-free velocity field at the solid boundaries, are 
obtained by an influence matrix technique (Kleiser & Schumann 1980, 1984). The 
numerical procedure is essentially the same as that of Kleiser & Schumann, which 
requires the solution of a sequence of Helmholtz equations at each time step. These 
equations are solved by a preconditioned minimum residual method (Canuto et al. 
1988). 

3. Results 
3.1. Review of linear-instability results 

The linear-instability boundary in the (Gr/Re, Re) plane for mixed convection of air in 
an annulus was determined in Yao & Rogers (1989a), and is shown on figure 2. In this 
earlier paper, it was demonstrated that at K =  10, the least-stable infinitesimal 
disturbances are often non-axisymmetric, and the effects of curvature are clearly 
present. Consequently, since the linear instability results are well known and the 
important physical effects of curvature are present in this case, this geometry was 
chosen for the present study as well. 

The definition of Gr used in this paper gives the result that when Gr/Re is positive, 
the inner cylinder is at a higher temperature than the outer cylinder. As figure 2 
illustrates, the shape of the linear-instability boundary depends on whether the inner 
or outer cylinder is warmer, except at values of Re below 100, where the results are 
symmetric about the Gr/Re = 0 axis. At small values of Re, the flow becomes linearly 
unstable to thermally induced instability as the magnitude of Gr/Re increases. This 
instability is determined to be a thermal-shear instability, since it obtains most of its 
kinetic energy from shear production. For positive Gr/Re, the azimuthal wavenumbers 
of the least-stable thermal-shear instability varies from n = 19 at Re = 6000 to n = 0 
at Re below 500, and the least-stable linear disturbances may be non-axisymmetric in 
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FIGURE 2. Stability diagram in (GrlRe, Re)-coordinates. 

this case. At negative values of Gr/Re, on the other hand, the least-stable thermal-shear 
disturbances are axisymmetric at all values of Re. 

In isothermal flow (Gr/Re = 0), the motion becomes linearly unstable to an 
axisymmetric shear instability at Re = 7876, as illustrated. For positive Gr/Re, this 
instability is stabilized as Gr/Re increases. For negative Gr/Re, this instability is 
initially destabilized by decreasing Gr/Re, but as Gr/Re decreases further, the 
instability is stabilized, although not as sharply as it is for Gr/Re > 0. In all cases, the 
least-stable azimuthal mode is axisymmetric for the shear instability. 

In between the thermal-shear and the shear instabilities is the interactive instability. 
For Gr/Re greater than zero, the interactive instability forms a distinct curve, and may 
be identified from the shear and thermal-shear instability curves by characteristic 
wavenumbers and wave speeds, even in the regions where the curves intersect. The 
least-stable azimuthal wavenumber varies in this case from n = 13 at Re = 5000 to 
n = 0 for Re = 8000 and larger. For Gr/Re less than zero, on the other hand, the linear- 
instability boundary also consists of thermal-shear, interactive and shear instabilities, 
but the curves blend together smoothly, and no distinguishing characteristics, such as 
wavenumber or wave speed, can be used to separate the instabilities. The range of each 
instability has been identified in this case by considering the evolution, with increasing 
Re, of the wavenumbers and wave speeds, and the thermally induced instability was 
determined to be the thermal-shear mode for Re < 2000, and the interactive mode for 
Re > 2000. 

Since the lowest-order weakly nonlinear analysis is asymptotically correct in the limit 
as ci approaches zero, the theory may be used to predict the behaviour of the linear 
modes at the least-stable values of Gr/Re and Re. In figure 2, the neutral-stability 
boundaries are made up of two types of lines, solid and broken. The solid lines indicate 

3.2. Weakly nonlinear results near the neutral curves 
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FIGURE 3. Linear stability diagram in (GrlRe, a)-coordinates for Re = 6000. 

subcritical instability ((u,), > 0) while the broken lines indicate supercritical instability 
((u,), < 0) at the least-stable wavenumbers for linear instability. In this problem, we 
find that the thermal-shear instability is supercritical at all wavenumbers, while, on 
their respective neutral curves, the shear and interactive instabilities are subcritical at 
larger axial wavenumbers, and supercritical at smaller wavenumbers. This is illustrated 
on figures 3 and 4, which are plots of the neutral curves in the (Gr/Re,a)-plane at 
Re = 6000 and 13 000, respectively. On figure 3, the axisymmetric interactive modes for 
positive and negative values of Gr/Re are shown, along with the non-axisymmetric 
(n = 19) thermal-shear mode. As mentioned, for the thermal-shear instability, the value 
of (a& is negative at all wavenumbers, and this is a supercritical instability. Also, it is 
seen that the variation of the least-stable value of Gr/Re with the axial wavenumber 
is small for this instability. This is also true of the azimuthal wavenumber (Yao & 
Rogers 1989 a). Consequently, this instability has a large band of supercritically 
unstable wavenumbers, which will begin to grow at nearly the same value of Gr/Re. 

The minimum critical value of Gr/Re for the axisymmetric interactive mode shown 
on figure 3 is slightly larger than that for the non-axisymmetric interactive mode (55.3 
as opposed to 55.2). On the other hand, with the non-axisymmetric interactive mode, 
the value of (a,), is negative at all values of the axial wavenumber. However, with 
n = 0, (al) ,  becomes positive for a > 2.43, and subcritical instabilities will exist at these 
wavenumbers. At negative Gr/Re, the flow first becomes linearly unstable to an 
axisymmetric disturbance at Gr/Re = -46. The instability is supercritical for a band 
of wavenumbers around the least-stable wavenumber, but at wavenumbers greater 
than 2.75, (UJ, changes sign, and subcritical instability occurs. 

The neutral curves for the shear and interactive instabilities at Re = 13 000 shown on 
figure 4 illustrate that the value of (a,), for the shear instability is negative at the least- 
stable wavenumber, but becomes positive as a increases, and subcritical shear 
instabilities will exist at larger wavenumbers. With the interactive instability at this Re, 
the value of (a,), is positive for 01 greater than 2.05, and subcritical instability will exist 
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at these wavenumbers. Comparison with figure 3 illustrates that with the interactive 
instability, the wavenumber above which subcritical instability exists decreases as Re 
increases. This is reflected on figure 2, which shows that at Re = 8200, the interactive 
instability boundary changes from a dashed line, indicating supercritical instability at 
the least-stable wavenumbers, to a solid line, indicating subcritical instability at these 
points. On the other hand, with shear instability, as Re increases, the least-stable 
wavenumbers become supercritical. However, at all Re, subcritical instability exists 
with the shear instability at larger axial wavenumbers. 

These results also demonstrate that more than one type of instability may be present 
at the same values of Gr/Re and Re. For example, figure 3 illustrates that at 
Gr/Re = 60 at Re = 6000, both the thermal-shear and interactive instabilities are 
present. Furthermore, the thermal-shear instability is unstable to a large waveband of 
disturbances between 01 = 0.5 and a = 2. The interactive instability is also super- 
critically unstable in a waveband between a = 1.85 and a = 2.6. At a > 2.6, the 
axisymmetric interactive instability is linearly stable, but subcritical instability exists 
at these wavenumbers. Furthermore, with the thermal-shear instability at smaller 
wavenumbers, the results on figure 3 demonstrate that the free oscillations of the 
harmonic wave will exist at slightly supercritical values of Gr/ Re since the E2 wave also 
becomes linearly unstable. All of these possibilities must be considered in a complete 
simulation of mixed-convection instability. To study these phenomena requires 
development of a wave-interaction theory for a continuous spectrum of unstable 
waves, which we are presently undertaking. 

3.3. Comparison of weakly nonlinear results with direct simulations 
In the subcritical region, the minimum value of the threshold amplitude for instability 
A ,  at a particular combination of Gr/Re and Re, is determined by a search of the 
(a, n)-space. It has been determined that the value of the minimum threshold amplitude 
varies substantially with the axial wavenumber a. However, in all cases investigated, 
the least-stable azimuthal wavenumber for subcritical finite-amplitude instability is 
n = 0. 
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In addition to the linearly unstable modes, additional linearly stable modes were 
investigated which are potentially subcritically unstable. In this study, the ten least- 
stable linear modes have all been analysed. The lowest-order weakly nonlinear theory 
predicts that, in addition to the shear and interactive modes, there is a subcritically 
unstable thermal-buoyant mode. However, in all cases, the higher-order weakly 
nonlinear theory predicts opposite results for the same mode. Furthermore, the 
threshold amplitudes predicted by the lowest-order theory are very large for this 
disturbance, so that the temperature fluctuations necessary to trigger the instability are 
of the same order as the basic state. Therefore, this mode is not considered in this 
paper. 

To determine the range of validity of weakly nonlinear results, they are compared 
with results of a direct numerical simulation of the Navier-Stokes equations at selected 
points in the parameter space (GrlRe, Re). The threshold amplitude for subcritical 
instability for given values of Gr/Re, Re and a was determined from the direct 
numerical simulations by making several runs with different initial amplitudes. The 
initial conditions used for the computations are of the form: 

u = Azi(7) eiaa + c.c., 
v = AB(7) eiaZ + c.c., 
w = K(7) +A$($ eiaz + c.c., 
0 = 0,(7) + ~ & q )  eiaZ + c.c., 

where W, and 0, are the basic-state velocity and temperature profiles, respectively, A 
is the disturbance amplitude, zi, 0,  fi and 6 are the linear-instability eigenfunctions and 
C.C. denotes the complex-conjugate. The solution was marched forward in time until 
the initial transients decayed and a steady growth or decay rate could be determined. 
The threshold amplitude was then determined by linear interpolation of these results. 
To illustrate the interpolation process used to determine the threshold amplitudes, we 
consider a specific case in which the parameters are GrlRe = 30, Re = 6000, a = 3. The 
time history of the disturbance kinetic energy, E, for this case is shown in figures 5 (a) 
and 5 (b) for two different initial amplitudes. Figure 5 (a)  indicates a steady decay of the 
disturbance after an initial transient period, while figure 5 (b) indicate a steady growth 
rate. The steady growth or decay rate dE/dt is plotted in figure 6 as a function of the 
initial disturbance kinetic energy E, for four values of E,. Figure 6 indicates that the 
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FIGURE 6. The growth rate of the disturbance kinetic energy obtained from the direct simulations 
at GrlRe = 30, Re = 6000, u = 3.0 as a function of the initial disturbance kinetic energy. 

Subcritical model Supercritical mode 
GrlRe 30 120 
Re 6000 150 
U 3.0 2.5 
A 0.1217 x 0.6935 x 
c, 0.51675 0.834 14 
Computed c, 0.51525 0.834 17 
CP -0.034 14 0.069 14 
Computed c, -0.03467 0.06968 

TABLE 1.  Behaviour of small-amplitude disturbances; time step At = 0.05, final time T = 10 

relation between dE/dt and E,, is linear for small values of dE/dt. Thus, linear 
interpolation may be used to obtain the threshold value of the initial disturbance 
kinetic energy, Et, for which dE/dt = 0. 

The computations were done on the CRAY-XMP supercomputer at Arizona State 
University using 33 Chebyshev polynomials in the radial direction, 32 Fourier modes 
in the axial direction, 8 Fourier modes in the azimuthal direction and a time step 
At = 0.005. The accuracy of the numerical method was tested by comparing the 
numerically determined growth rates and wave speeds with linear theory. The results 
of two such tests are summarized in table 1 ,  which shows that the growth rates and 
phase speeds computed from the direct simulations for small-amplitude disturbances 
are in good agreement with those predicted by linear theory. Adequate spatial 
resolution was ensured by monitoring the energies in the highest Fourier modes. As 
noted by Marcus (1981), severe truncation in the number of Fourier modes results in 
an artificial curl in the high-wavenumber end of the energy spectrum. Our spectra did 
not exhibit such a curl. The energy in the largest axial wavenumber mode was found 
to be so small that aliasing errors are negligible compared to the time-stepping errors. 
The energy in the azimuthal Fourier modes (m =+ 0) was found to be zero for the cases 
considered in this investigation, that is, the flow remained axisymmetric. 

Typical results of the calculation of the threshold amplitudes for subcritical 
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FIGURE 7. Threshold amplitude us. axial wavenumber in the subcritical region. (a) Re = 7876 and 
&/Re = 3. (b) Re = 7876 and GrlRe = 10. (c)  Re = 6000 and Gr/Re = 30. 

instabilities are illustrated on figure 7. Figure 7(4 is a plot of A, us. a as predicted by 
both weakly nonlinear theories for the axisymmetric shear mode at Re = 7876 and 
Gr/Re = 3, near the critical point of isothermal flow, which is Re = 7876, Gr/Re = 0.  
The minimum threshold amplitudes predicted by each theory agree within 2 YO at this 
condition. Figure 7(b) is a plot of A, us. a at Re = 7876 and Gr/Re = 10. In this case, 
the fifth-order theory predicts a value which is 15 YO larger than that predicted by the 
third-order theory. Figure 7(b) also illustrates that the wavenumber of the most 
unstable finite-amplitude disturbance is increasing with respect to the least-stable linear 
mode as I c , ~  increases. This is further shown by figure 7(c), which is a plot of A, us. a 
at Re = 6000 and Gr/Re = 30. In this case, a distinct minimum in the A, us. a curve 
does not exist, but rather the minimum value of A, approaches 0.012 as a increases. At 
this point, the fifth-order theory does not predict a threshold amplitude. Similar results 
are observed throughout the (Gr/Re,Re)-plane when the magnitude of the amp- 
lification rate increase, and the fifth-order theory does not provide a check on the 
accuracy of the third-order theory in these cases. Therefore, the validity of this analysis 
has been investigated by comparing the third-order results to those predicted by the 
direct simulation. Figure 7(c )  shows that the direct simulation predicts a larger 
threshold amplitude at all wavenumbers. However, the trend predicted by the direct 
simulation is the same as that predicted by the weakly nonlinear theory: the threshold 
amplitude for subcritical instability decreases with increasing wavenumbers. 
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Re GrlRe A, (third-order) A, (fifth-order) A, (direct) 
4 000 0 0.0185 - 
4000 10 0.017 - - 
4 000 30 0.0156 - - 
6000 0 0.0146 - 0.024 

0.041 6 000 10 0.0125 - 
0.043 6 000 30 0.0122 - 

7 876 3 0.0043 0.0044 0.0041 
7 876 10 0.016 0.013 0.025 
7 876 30 0.0103 - 0.026 

0.023 9 000 30 0.0096 - 
1 1  000 30 0.0086 - 0.019 

0.01 13000 30 0.008 - 
0.007 15 000 30 0.0063 - 

- 

TABLE 2. Subcritical threshold amplitudes in the (GrlRe, Re)-plane calculated by the third-order 
weakly nonlinear method, the fifth-order weakly nonlinear method and by the direct simulation; - 
denotes that the method failed to predict a threshold amplitude for instability at the given condition 

The values of the minimum subcritical threshold amplitudes predicted by the weakly 
nonlinear theories and the direct simulation are given in table 2 for a range of values 
of Gr/Re and Re. The third-order theory predicts a subcritical threshold amplitude at 
values of Re above 2000 for all Gr/Re. However, the results are unreliable in this region 
because the perturbation technique may not be extended this far. To determine the 
range for which the results are reliable, we compare the threshold amplitudes for 
instability predicted by the three techniques as ci increases. At Re = 7876 and 
Gr/Re = 3 ,  the value of ci is -0.00021, and the amplitudes predicted by the third-order 
theory, the fifth-order theory and the direct simulation are in agreement. At Re = 7876 
and Gr/Re = 10, the value of ci is -0.00188. Here, the amplitude predicted by the 
third-order theory and the fifth-order theory differ more substantially, and the direct 
simulation predicts a value of A, which is 2.2 times as large as that predicted by the 
third-order theory. Therefore, all theories still predict a subcritical threshold amplitude 
at this point, but the numerical values of A,  do not agree as well as they did when the 
magnitude of ct was smaller. At Re = 6000 and Gr/Re = 10, ci = 0.04, and the fifth- 
order theory does not predict a threshold amplitude at this point, while the direct 
simulation predicts an amplitude 3.3 times as large as that predicted by the third-order 
theory. Therefore, subcritical instability exists at this point as predicted by the third- 
order theory, but the threshold amplitude for instability predicted by the theory is 
inaccurate. At Re = 4000, and Gr/Re = 10, cg = -0.05, and the third-order theory 
predicts A,  = 0.017. However, as with the fifth-order theory, in this case the direct 
simulation also fails to predict a threshold amplitude. Clearly, neither the results nor 
the trends predicted by the weakly nonlinear theory are reliable at this point. The 
results discussed here illustrate that when both the third- and fifth-order calculations 
predict threshold amplitudes, the direct simulation will also predict a threshold 
amplitude. Therefore, in this problem, the predictions are reliable when both the third- 
and fifth-order theories produce similar results, and verification by a direct simulation 
is unnecessary in these cases. However, the results of the third-order theory are not 
necessarily invalid after the fifth-order method has broken down. To fully determine 
the range of applicability of the third-order results, they must be compared with those 
obtained by the direct simulation. 

As the data in table 2 indicate, the numerical agreement between the weakly 
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nonlinear results and those of the direct simulation improves as Re increases. For 
example, at Re = 6000 and Gr/Re = 30, the threshold amplitude predicted by the 
direct simulation is 3.5 times as large as that predicted by the third-order theory. At 
Re = 7876 and Gr/Re = 30, the ratio decreases to 2.5. This ratio continues to decrease 
as Re increases, and at Re = 15000 and Gr/Re = 30, the direct method predicts a 
threshold amplitude that is only 10 YO larger than that of the weakly nonlinear theory. 
It is worth pointing out that at Gr/Re = 30, in all cases the fifth-order theory has failed 
to prehct a threshold amplitude. This is because the minimum threshold amplitude in 
these cases occurs at an axial wavenumber of a = 3, as was illustrated in figure 7(c). 
Therefore, even though the value of Gr/Re was close to the minimum critical value, 
since the wavenumber is substantially different than the critical wavenumber, the 
magnitude of ci is too large for the fifth-order method to converge. 

With the thermal-shear instability, at small Re, the subcritical shear and interactive 
instabilities do not appear, and finite-amplitude equilibrium states will exist for the 
thermal-shear disturbances when the magnitude of Gr/Re exceeds the minimum 
critical value. These regions are shown on figure 2, where the contours of constant 
supercritical equilibrium amplitude are plotted for this instability at both positive and 
negative values of Gr/Re. At Re less than 1000 the critical value of Gr/Re is 
increasingly rapidly. As a result, at fixed Gr/Re in this region, the equilibrium 
amplitude will increase as Re increases. However, at Re greater than 1000, (GrlRe), 
approaches a constant value, and the amplitude begins to decrease with increasing Re. 
These results also illustrate that both the linear-instability boundary and the contours 
of constant equilibrium amplitude are close to symmetric about the Gr/Re = 0 axis at 
small Re. 

At Gr/Re = 120 and Re = 150, the value of ci is 0.07. The equilibrium amplitude 
predicted by the third-order theory at this point is A,  = 0.0694, that predicted by the 
fifth-order theory is A ,  = 0.0692, and the direct simulation predicts A,  = 0.085. 
Therefore, the agreement between the third- and fifth-order results is very good, and 
the direct simulation is in reasonable agreement with the weakly nonlinear results. The 
agreement is much better in this case than it was in the subcritical region, where the 
results began to diverge when the magnitude of ci was less than 0.01. This is consistent 
with the results of Sen & Venkateswarlu (1983), who studied a supercritical portion of 
the neutral curve for plane-Poiseuille flow, and also found that the weakly nonlinear 
theory was valid for a larger range in the supercritical region than it was in the 
subcritical region. This also explains why the heat-transfer rates in the annulus with a 
vertical temperature gradient imposed on the inner cylinder that were predicted by the 
third-order finite-amplitude theory or a supercritical instability in YR compared well 
with the experimental data of Maitra & Subba Raju (1975) over a wide range of heating 
rates. 

In the subcritical region, the lack of prediction of a threshold amplitude by the 
higher-order theory as ct increases is similar to the behaviour observed in plane- 
Poiseuille flow by Sen & Venkateswarlu (1983), who used the equilibrium-amplitude 
method. They found that, except when the magnitude of the amplification rate was 
small, if the series sum was truncated at even orders, no threshold amplitude was 
predicted, in contrast to the results when the series was truncated at odd order. By 
considering the first 19 Landau coefficients and using Shank’s method to extend 
their results, they determined the ‘true sum’ of the series. They found that at 
(Re- Re,)/Re, = 0.13, the result predicted by the lowest-order theory was 25 YO 
smaller than that predicted by the true sum of the series. These results lead to the 
conclusion that in this problem, at Re = 6000 and Gr/Re = 10, the inclusion of more 
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terms in the expansion is unlikely to bring the amplitudes predicted by the weakly 
nonlinear method into agreement with the direct simulation, and the perturbation 
technique has reached its limit at this point. This demonstrates that the range for which 
the weakly nonlinear theory may be used to accurately predict the threshold amplitude 
for instability is limited in this case. However, the results have also demonstrated that 
the trends predicted by the weakly nonlinear theory agree with those of the direct 
simulation for a larger range. Consequently, the theory may be used to complete a 
parametric study of the instabilities in complex flows, such as this, where the cost of 
a complete study by a direct simulation is prohibitive. The weakly nonlinear results 
may then be used to identify a few conditions to be studied in detail by a numerical 
simulation. 

3.4. Energy transfer 
The appearance of subcritical instability at larger wavenumbers in the shear and 
interactive instabilities leads us to study the nature of the instability in more detail by 
considering the energy transfer in the non-isothermal flow. As is discussed in YR, in 
non-isothermal flows, the potential energy of density waves and the kinetic energy of 
momentum waves is transferable. Therefore, the disturbance waves may gain kinetic 
energy from both shear production, which is the product of the Reynolds stresses and 
the mean-flow strain-rate, and buoyant production, caused by the fluctuating body 
force. The transfer of thermal energy to the momentum wave occurs because 
components of the disturbance heat flux exist both in the balance of disturbance kinetic 
energy and in the balance of thermal variance. In vertically stratified flows, as was the 
case in YR, the exchange occurs directly at the same wavelength along the direction of 
the body force. In non-stratified flows, as is the case in this paper, there are no mean 
gradients in the direction of the body force, and the equations for the balance of 
thermal variance and disturbance kinetic energy are not directly coupled. In this case, 
the transfer of energy occurs indirectly between the radial disturbance heat flux, a, 
which appears in the gradient production term in the balance of thermal variance, and 
the axial disturbance heat flux, 3, which appears in the buoyant production term in 
the balance of disturbance kinetic energy. These heat flux components interact with 
each other because the axial and radial disturbance velocities are coupled through 
pressure scrambling (Rogers & Yao 1992b). 

As explained by Stuart (1960), the balance of kinetic energy for the fundamental 
disturbance leads the amplitude equation : 

The expressions for the balance of kinetic energy for the fundamental wave as well as 
the terms in (12) are given in the Appendix. Comparison of (12) with (7) shows that 

2% = q 0 1 +  4 2  + q 1 0  + <l+ 911. (13) 
The physical interpretation of the terms in (13) is as follows. The first term, qol, 
represents the gradient production of kinetic energy due to the interaction between the 
fundamental disturbance and the distorted mean velocity gradient. Since the energy 
required for the distortion of the mean flow is obtained from the fundamental 
disturbance, this term will always be negative. Consequently, if only this term is 
considered (Stuart 1958) a supercritical disturbance will always be predicted. The 
second term, g12, represents the flow of energy from the fundamental wave due to the 
harmonic. The last three terms, %lo, and gl1 all represent energy exchange due to 
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FIGURE 8. Plot of terns in (13) vs. the axial wavenumber for the interactive 

instability at Re = 6000 and Gr/Re = 50. 

the modification of the shape of the fundamental disturbance. The term gl0 represen s 
the modification in the gradient production of disturbance energy due to the change of 
the disturbance shape. It is important to note that this term, in contrast to qol, may 
be either positive or negative. If the term is positive, the change in the shape of the 
disturbance enhances the gradient production of disturbance energy. The term q1 
represents the change in the buoyant production of disturbance energy due to the 
change in shape of the fundamental wave. The last term, gl1, represents a modification 
in the viscous dissipation of disturbance kinetic energy due to the change in the 
disturbance shape. Therefore, this term also may be of either sign. If gl1 is positive, the 
change of shape of the fundamental wave results in a decrease in the rate of dissipation 
of the disturbance. 

By investigating the magnitude of the terms in (1 3), the important physical processes 
that lead to a change from supercritical (alr < 0) to subcritical (alr > 0) instability with 
increasing wavenumber for the shear and interactive instabilities may be enumerated. 
This is illustrated on figure 8, which is a plot of the terms in (13) us. the axial 
wavenumber for the interactive instability at Re = 6000 and Gr/Re = 50. In this case, 
alr becomes positive for a > 2.4. As discussed above, these results demonstrate that the 
value of qOl is negative at all wavenumbers, and this effect will always tend to stabilize 
a subcritical flow. The terms ql and Lf2 are very small, and account for less than 3 YO 
of the Landau constant. On the other hand, the terms that account for modification in 
the gradient production and viscous dissipation due to the disturbance growth, qlo and 
gl1, are more significant. It is these terms, along with qolr that represent the important 
physical processes that lead to subcritical instability. As the results show, the variation 
of qol with wavenumber is relatively small. The plot of gI: demonstrates that the 
change in shape of the disturbance increases the rate of dissipation at wavenumbers 
below a = 2.32, and decreases it at larger wavenumbers. Therefore, this effect becomes 
destabilizing to subcritical flows at wavenumbers greater than a = 2.32. However, the 
dominant effect in this case is the modification of the shear production of disturbance 
energy due to the change in shape of the disturbance, as the plot of qlo demonstrates. 
This effect is stabilizing below a = 2.34, but becomes destabilizing thereafter. As the 
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FIGURE 9. Plot of terms in (13) us. the axial wavenumber for the thermal-shear 
instability at Re = 6000 and Gr/Re = 60. 

plot of a,, on figure 8 demonstrates, the value of the Landau constant becomes positive 
above a = 2.4, when the combined destabilizing effects of qlo and gl1 overcome the 
stabilizing effect of %ol. As the wavenumber increases further, ql0 increases rapidly, 
thus increasing the magnitude of the Landau constant and tending to decrease the 
magnitude of the threshold amplitude for subcritical instability. These results 
demonstrate that the subcritical instability of the interactive mode at large 
wavenumbers is primarily due to enhanced shear production of disturbance energy at 
these conditions. This occurs because, at the larger wavenumbers, the shape of the 
fundamental disturbance is modified due to the (nonlinear) finite-amplitude effects 
from that of the infinitesimal disturbance predicted by linear theory to a shape more 
favourable for shear energy production. 

To investigate the energy transfer in the supercritical thermal-shear instability, the 
terms in (13) have bee plotted vs. the axial wavenumber at Re = 6000 and Gr/Re = 60 
on figure 9. These results illustrate that all of the nonlinear terms are stabilizing in the 
sense that an increase in the disturbance amplitude results in a decrease in the rate of 
growth of the disturbance. However, in this case, the disturbance is already linearly 
unstable. Consequently, the nonlinear effects limit the growth of the disturbance, 
resulting in a finite-amplitude equilibrium state. Similar to the subcritical interactive 
instability, the transfer of energy to the harmonic and the modification of buoyant 
energy production, quantified by g12 and Kl respectively, are small compared to the 
other terms. The transfer of energy from the disturbance back to the mean flow, given 
by qol, decreases nearly linearly with increasing wavenumber, but, while larger than 
gI2 and ql, is small in comparison to the combined effects of $lo and gl1. The 
dominant process in the supercritical case is the modification of the gradient 
production of disturbance energy due to the change in shape of the disturbance, as the 
plot of qlo demonstrates. However, in contrast to the subcritical case, the rate of 
energy production is decreased by the nonlinear effects. The value of this term 
decreases with increasing wavenumber, but the rate of decrease become smaller as the 
wavenumber increases. Compensating for this, however, the rate of viscous dissipation 
of the disturbance increases as the wavenumber increases, as the plot of gl1 illustrates. 
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The result is that the Landau constant decreases almost linearly with increasing 
wavenumber. 

4. Conclusions 
The calculation of the first Landau constant at the linearly least-stable points for the 

shear and interactive instabilities has shown that these modes may be either 
supercritical or subcritical at these wavenumbers. However, even when they are 
supercritical at the least-stable points, the shear and interactive instabilities are always 
subcritical at other nearby wavenumbers, and are, therefore, subcritical instabilities. 
With the thermal-shear mode, however, supercritical behaviour is predicted at all 
wavenumbers, and this is a supercritical instability. 

It has been demonstrated that the weakly nonlinear method is a useful tool in 
investigating both subcritical and supercritical instability of complex flows. However, 
the range of validity of the weakly nonlinear calculations must be investigated. In this 
paper, we have accomplished this by comparison of the lowest-order results with those 
obtained by including more terms in the perturbation series and by comparison with 
a direct simulation at a few points. These comparisons show that the predicted 
threshold amplitudes are accurate only when the magnitude of the amplification rate 
is small in the subcritical region. However, the direct simulation verifies that the trends 
predicted by the weakly nonlinear theory are correct for Re greater than 6000, even 
though the predicted threshold amplitudes are not accurate as (cil increases. On the 
other hand, the accuracy of the weakly nonlinear calculations is found to be much 
better in the supercritical region. 

Analysis of the energy sources for the disturbance has shown that subcritical 
instability occurs at larger wavenumbers primarily because of increased gradient 
production of disturbance kinetic energy. This is because the shape of the fundamental 
disturbance changes from that predicted by linear instability theory to a shape more 
favourable for shear energy production at shorter wavelengths. The results have also 
demonstrated that many possibly unstable modes may be present at the same values 
of Gr/Re and Re. All of these modes as well as wave interactions between the modes, 
must be considered to obtain a comprehensive picture of the instability of mixed 
convection. 

Appendix 
The balance of kinetic energy for the fundamental disturbance is given by 

+u w -+-- aw, wlvl  aw, +-), 
I '37 y+Kagl 
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where the overbar implies the spatial mean and the brackets ( ) imply integration over 
the volume of the wave. The formulae for the terms in (12) are 

(A 2) 
- - -  

eo = ;<u?, + v?o + wB>, 
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